Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820200300060513
Journal of Life Science
2020 Volume.30 No. 6 p.513 ~ p.521
The Role of Bmi1 in Pilocarpine-induced Status Epilepticus in Mice
Pyeon Hae-In

Bak Ji-A
Choi Yun-Sik
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) is a polycomb group protein and a core component of polycomb repressive complex 1. Initial research into Bmi1 has focused on its role in tumorigenesis, and it is generally accepted that it is important for the proliferation and survival of cancer cells. However, more recent studies have revealed that Bmi1 is downregulated in brains with neurodegenerative disease and that it regulates the function of mitochondria and reactive oxygen species levels. In this study, we tested the therapeutic potential of Bmi1 in pilocarpine-induced seizures in Bmi1-knockout mice. Bmi1 expression transiently increased in the hippocampal CA1 and CA3 and the dentate gyrus following pilocarpine-induced status epilepticus (SE). In terms of seizure behavior, SE induction was 43.14% and 53.57% for Bmi1+/+ and Bmi1+/- mice, respectively. However, there was no significant difference in mortality or hippocampal damage between the two groups. Two months after SE induction, the frequency of epileptic seizures in the Bmi1+/- mice was 50% lower than in the control group, although the difference was not statistically significant. In addition, mossy fiber outgrowth in the Bmi1+/- mice was significantly higher than in their wild-type littermates. Taken together, these data indicate that reduced Bmi1 activity increases pilocarpine-induced seizure probability and mossy fiber outgrowth.
KEYWORD
Bmi1, mossy fiber sprouting, pilocarpine, recurrent seizure, status epilepticus
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)